

课程文件目录:
深度学习 Pytorch (3.7G)
1.深度学习框架介绍 (48.7M)
1.介绍leson1-Pytorch介绍.mp4 (48.7M)
2.开发环境准备 (54.5M)
2.lesson2-开发环境准备.mp4 (54.5M)
3.初见深度学习 (208.6M)
3.Lesson3-Linear Regresion案例-1.mp4 (71.9M)
4.Lesson3-Linear Regresion案例-2.mp4 (43.1M)
5.Linearson4-PyTorch求解Linearch Regression案例.mp4 (35.7M)
6.lesson5 -引入手写数字问题1.mp4 (36.7M)
7.lesson5 -引入2个手写数字问题.mp4 (21M)
4.Pytorch张量操作 (426.4M)
8.lesson6 基本数据类型1.mp4 (54.4M)
9.lesson6 基本数据类型2.mp4 (28.2M)
10.lesson7 创建Tensor 1.mp4 (51.6M)
11.lesson7 创建Tensor 2.mp4 (44.3M)
12.lesson8 索引与切片1.mp4 (47.2M)
13.lesson8 索引与切片2.mp4 (45.4M)
14.lesson9 维度变换1.mp4 (33.1M)
15.lesson9 维度变换2.mp4 (40.7M)
16.lesson9 维度变换3.mp4 (40.8M)
17.lesson9 维度变换4.mp4 (40.8M)
5.张量高级操作 (405.3M)
18.lesson10 Broatcasting 1.mp4 (57.9M)
19.lesson10 Broatcasting 2.mp4 (46.2M)
20.lesson11 合并与切割1.mp4 (46.8M)
21.lesson11 合并与切割2.mp4 (30.8M)
22.lesson12 基本运算.mp4 (67.1M)
23.lesson13 数据统计1.mp4 (39.9M)
24.lesson13 数据统计2.mp4 (54.7M)
25.lesson14 高阶OP.mp4 (61.9M)
6.随机梯度下降 (286.1M)
26.lesson16 什么是梯度1.mp4 (69.2M)
27.lesson16 什么是梯度2.mp4 (43.3M)
28.lesson17 常见梯度.mp4 (18.4M)
29.lesson18 激活函数及其梯度1.mp4 (45.5M)
30.lesson18 激活函数及其梯度2.mp4 (44.4M)
31.lesson18 激活函数及其梯度3.mp4 (65.3M)
7.感知梯度传播推导 (258.3M)
32.lesson19 单输出感知机1.mp4 (47.4M)
33.lesson19 多输出Loss层2.mp4 (49.7M)
34.lesson20 链式法则.mp4 (39.9M)
35.lesson21 反向传播.mp4 (82M)
36.lesson22 优化小实例.mp4 (39.2M)
8.多层感知机和分类器 (353.9M)
37.lesson24 Logistic Regression.mp4 (47.8M)
38.lesson25 交叉熵.mp4 (72.8M)
39.lesson26 多分类实战.mp4 (35M)
40.lesson27 全连接层.mp4 (52.1M)
41.lesson28 激活函数和GPU加速.mp4 (39.6M)
42.lesson29 经过个人测试.mp4 (53.8M)
43.leson30-Visdom可视化.mp4 (52.8M)
9.过拟合 (262.5M)
44.lesson31-过拟合和欠拟合.mp4 (42.5M)
45.lesson32-Train-Val-Test-交叉验证-1.mp4 (45.9M)
46.lesson32-Train-Val-Test-交叉验证-2.mp4 (32.3M)
47.lesson33-regularization.mp4 (39M)
48.lesson34-动量和lr衰减.mp4 (51.5M)
49.lesson35-early stopping, dropout, sgd.mp4 (51.2M)
10.卷积神经网络CNN (678.5M)
50.lesson37-什么是卷积-1.mp4 (62.8M)
51.lesson37-什么是卷积-2.mp4 (39.6M)
52.lesson38-卷积神经网络-1.mp4 (41.4M)
53.lesson38-卷积神经网络-2.mp4 (62.9M)
54.lesson38-卷积神经网络-3.mp4 (35.5M)
55.lesson39-Pooling&upsample.mp4 (34.1M)
56.lesson40-BatchNorm-1.mp4 (41.4M)
57.lesson40-BatchNorm-2.mp4 (51.3M)
58.Lesson41-LeNet5,AlexNet, VGG, GoogLeN.mp4 (49.3M)
59.Lesson41-Lenet5,AlexNet, VGG, GoogLeN.mp4 (40.4M)
60.lesson42-ResNet,DenseNet-1.mp4 (53.2M)
61.lesson42-ResNet, DenseNet-2.mp4 (43.6M)
62.lesson43-nn.Module-1.mp4 (45M)
63.lesson43-nn.Module-2.mp4 (31.4M)
64.leson4-数据增强Data Argumentation.mp4 (46.8M)
11.CIFAR10和Resnet实战 (0B)
12.循环神经网络RNN&LSTM (465M)
65.时间序列表示lesson46.mp4 (53.5M)
66.lesson47-RNN原理-1.mp4 (28.4M)
67.lesson47-RNN原理-2.mp4 (34.9M)
68.lesson48-RNN 使用Layer-1.mp4 (34.2M)
69.lesson48-RNN Layer使用-2.mp4 (29.9M)
70.leson49-时间序列预测.mp4 (53.3M)
71.lesson50-RNN训练难题.mp4 (55M)
72.lesson51-LSTM原理-1.mp4 (33M)
73.lesson51-LSTM原理-2.mp4 (45.7M)
74.lesson52-LSTM 使用Layer.mp4 (28.4M)
75.lesson53-情感分类实战.mp4 (68.6M)
13.对抗生成网络GAN (316.2M)
76.lesson54-数据分布.mp4 (17.4M)
77.lesson55-画家的成长历程.mp4 (28.9M)
78.leson56-GAN发展.mp4 (23M)
79.leson57-纳什平衡-D.mp4 (20.4M)
80.leson58-纳什平衡-G.mp4 (36.6M)
81.Lesson59-JS散度的缺点.mp4 (36.8M)
82.lesson60-EM距离.mp4 (17.2M)
83.lesson61-WGANWGAN-GP.mp4 (28.8M)
84.lesson62-G和D实现.mp4 (17.3M)
85.leson63-GAN实战.mp4 (33.3M)
86.leson64-GAN训练不稳定.mp4 (20.2M)
87.lesson65-WGAN-GP实战.mp4 (36.3M)
附件
龙良曲 深度学习与PyTorch入门实战教程
3.70 GB
百度云盘资源
百度云盘分享下载
下载文件
相关阅读:
1.仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。我们非常重视版权问题,如有侵权请点击版权投诉。敬请谅解!
2.如遇下载链接失效、解压密码错误等问题请点击 提交工单
3.在下载源码前,请务必要仔细阅读并接受 购前/下载协议 购买即视为您同意该协议!
游人客栈 » 龙良曲 深度学习与PyTorch入门实战教程